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ABSTRACT

Total synthesis of (+)-sambutoxin has been achieved, establishing the relative and absolute stereochemistry of the naturally occurring mycotoxin.
Efforts feature methodology for enantiocontrolled construction of 1,3-anti-dimethyl arrays and a novel Saegusa oxidation to provide a pyridinone
methide leading to formation of the central dihydropyran ring.

In 1995, Lee and co-workers reported the isolation of the
mycotoxin designated as sambutoxin (1) from wheat cultures
of Fusarium sambucinumPZF-4.1 This metabolite is struc-
turally representative of a small class of natural products
featuring the central 4-hydroxy-2-pyridinone linked to
two additional ring systems at the C-3 and C-5 posi-
tions.2 Examples such as funiculosin,2a oxysporidi-
none,2b apiosporamide,2c and related natural products2d

display a range of biological activities including antibiotic,
antiinsecticidal, antifungal, and antitumor properties. On the
other hand, sambutoxin was found to be a potentially lethal
contaminant in the feed sources of livestock producing
hemorrhagic lesions of the gastrointestinal tract. While the
previous efforts for structure determination of1 were able
to establish the connectivity and relative stereochemistry of

the substituted tetrahydropyran ring, the stereochemistry of
the 1,3-dimethyl array at C-14 and C-16 and the absolute
configuration have remained undefined. In connection with
our previous syntheses of pyridone metabolites tenellin3 and
ilicicolin H,4 and our continuing interests in devising
methodology toward funiculosin,5 a successful strategy for
preparation of1 has been developed. Herein we report a
convergent asymmetric synthesis of (+)-sambutoxin, which
has also established the assignments of relative and absolute
stereochemistry.

The development of an efficient, enantioselective synthesis
of the acyclic 1,3-dimethyl (C14-C16) arrangement poses a
significant problem for natural product chemistry.6 Recogniz-
ing the structural similarities of sambutoxin and funiculosin,
we theorized that the trimethylheptenyl array of1 would
display the anti-1,3-dimethyl relationship as previously
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demonstrated by X-ray crystallography for tetrahydrofuni-
culosin.2a Aided by the expertise gained in stereocontrolled
preparations of 1,3-syn-and -anti-dimethyl arrays for myxo-
virescin synthesis,7,8 we examined the asymmetric conjugate
addition of Yamamoto copper reagents utilizing the Hruby
4-phenyloxazolidinone auxiliary.9 Thus, addition of the
organocopper complex derived from bromide310 provided
for outstanding diastereofacial selectivity as shown in5
(Scheme 1). Chelation in thesyn-s-cisconformer as depicted

in 5a facilitated a process of double induction stemming from
the existing asymmetry of the homochiral copper species.
Benzyl ether6 was obtained as a single diastereomer in 79%
overall yield following reductive conversion fromN-acyl-
oxazolidinone5. Hydrogenolysis of6 and homologation to
aldehyde8 was achieved in a straightforward fashion.11

To develop a flexible route for construction of the vicinal
C10 and C11 stereochemistry irrespective of the 1,3-dimethyl

stereogenicity in1, we chose to pursue an asymmetricanti-
aldol process.12 While a number of chiral auxiliaries and
procedures have been examined for this purpose, a general
solution for theanti-aldol reaction is not widely practiced.13

However, methodology previously described by Paterson and
co-workers,14 which has incorporated chirality in the starting
ketone9 as derived from (S)-ethyl lactate, has proven most
effective for our purposes (Scheme 2). Thus, theE(O)-boron

enolate of9 was generated with dicyclohexylboron chloride
and dimethylethylamine in ether at-78 °C with warming
to 0 °C (2 h). Upon cooling to-78 °C and introduction of
aldehyde8, the reaction mixture was stirred at-20 °C
overnight leading to the isolation ofâ-hydroxyketone10 in
78% yield as a single, crystalline diastereomer (mp 83-84
°C; [R]23

D +42.3° (c ) 1.1, CHCl3)). Our observations are
consistent with the Paterson model of the preorganized six-
membered transition state from10a. The minimization of
A(1,3)strain in theE(O)-enolate, in addition to lone pair
repulsion of the benzoate and enolate oxygens, imposes facial
discrimination by avoiding steric interactions with the methyl
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group of the lactate auxiliary. Adoption of this model
warrants careful consideration. For example, the correspond-
ing benzyl ether derivative of9 leads to formation of the
Z(O)-enolate under the same conditions. In the latter case,
postulation of bridging chelation of the benzyloxy substituent
with the boron-carbonyl complex is proposed to account
for syn-product formation.14,15Additionally, calculations have
suggested thatE(O)-enolates leading toanti-products can be
invoked from boat transition states without a substantial cost
in energy.16 The observation of a large coupling constant in
the proton NMR spectrum of10 (J ) 9.4 Hz) for the vicinal
C10-C11 hydrogens is characteristic of theanti-relationship.17

Silyl ether formation, oxidative cleavage of the chiral
auxiliary, and elongation of the carbon chain was ac-
complished using a sequence of standard transformations
leading to the construction of the heterocyclic pyridinone as
illustrated in Scheme 3. Formation of the enolate of13 and

condensation with the protected amino aldehyde1418 was
immediately followed by oxidation to provide enol ester15.

Removal of the Fmoc protecting group with DBU spon-
taneously triggered cyclization to the intermediate 5,6-
dihydropyridinone which underwent oxidation in situ to
pyridone 16 upon addition of bromotrichloromethane in
overall 92% yield (Scheme 4).19 Sluggish removal of the
TBS silyl ether of16 with tetra-n-butylammonium fluoride
provided the key intermediate17 for oxidation under buffered
Saegusa conditions with palladium acetate.20 These condi-
tions led exclusively to formation of the tetrahydropyran19

(48% yield) via formation of the pyridinone methide18
followed by intramolecular conjugate addition.21 Analysis
of the proton NMR spectrum of19 indicated a 2,6-
diequatorial substitution pattern, exhibiting diaxial coupling
of 10.2 and 9.9 Hz for methine hydrogens at C7 and C11,
respectively. Hydrolytic removal of theâ-methoxymethyl
ether of19 yielded (+)-sambutoxin (1), which proved to be
identical via direct comparisons with exception of opposite
optical rotation with a sample of the natural product.22,23

In conclusion, we have achieved the enantiocontrolled total
synthesis of (+)-sambutoxin, which has been identified as
the antipode of the natural mycotoxin. These efforts have
resolved the assignments of relative stereochemistry and
absolute configuration for the metabolite. Key elements of
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our synthesis route have included the development of the
asymmetric conjugate addition reaction, the Patersonanti-
aldol process, and the tandem Saegusa oxidation-cyclization
strategy.
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(23) We have also synthesized the diastereomer20 ([R] 27
D -156° (c )

0.1; CH3OH)) which exhibits significantly different proton NMR data
compared to those of the natural metabolite.
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